SHORTER COMMUNICATIONS

A NOTE ON THE LOCKHART-MARTINELLI CORRELATION IN THE TURBULENT-TURBULENT CASE

A. ROUET*

SIES/CEN Cadarache, France

(Received 20 March 1982)

NOMENCLATURE

	.	
b.	Blasius	exponent:

K, dimensionless parameter, equation (5);

m, dimensionless parameter to be fitted to the

experimental data;

X_{TT}, Lockhart-Martinelli parameter for the turbulent-turbulent case.

Greek symbols

α, void fraction;

y, slip ratio;

 $\mu_{\rm g}$, vapor viscosity;

 $\mu_{\rm b}$, liquid viscosity; $\rho_{\rm w}$, vapor density;

 $\rho_{\mathfrak{g}},$ vapor density; $\rho_{\mathfrak{h}},$ liquid density;

 $\phi_{\rm L}$, parameter related to the void fraction α by

equation (2); χ, vapor quality.

For two phase turbulent-turbulent flow in pipes, the void fraction α depends on the vapor quality, χ , on the vapor and liquid densities $\rho_{\mathbf{r}}$, $\rho_{\mathbf{l}}$ on the vapor and liquid viscosities $\mu_{\mathbf{r}}$, $\mu_{\mathbf{l}}$. That α actually only depends on the parameter $X_{\mathbf{T}\mathbf{l}}$ is the physical content of the Lockhart-Martinelli correlation [1], $X_{\mathbf{T}\mathbf{l}}$ being defined by

$$X_{TT} = [(1 - \chi)/\chi]^{(2-b)/2} (\rho_g/\rho_l)^{1/2} (\mu_l/\mu_g)^{(b/2)}$$
 (1)

where b denotes the Blasius exponent.

The curve $\alpha(X_{TT})$ is usually fitted by the equations

$$\alpha = 1 - (1/\phi_L),$$

$$\phi_L^2 = 1 + 21/X_{TT} + 1/X_{TT}^2.$$
(2)

Using such a fit is rather troublesome when performing analytical calculations. Moreover equation (2) yields an unphysical singularity for $\partial \alpha/\partial \chi$ as $\chi \to 0$. As a substitute for equation (2) we propose the relation

$$\alpha = 1 - (m/2) X_{11}^{2(2-b)} - \{ [1 + (m/2) X_{11}^{2(2-b)}]^2 - 1 \}^{1/2}$$
(3)

where m denotes a dimensionless parameter to be fitted to the experimental data.

A comparison of the fit of equations (2) and (3) is given in Table 1, with m=0.054. The agreement is quite good, except for $\chi \to 0$, since equation (3) does not generate any unphysical singularity.

 $\alpha(\chi)$, as defined by equation (3), only depends on $X_{\rm TT}$, according to the Lockhart-Martinelli correlation. This is the only case of equation (3) which can be turned into the simple analytical relation

$$\chi = (\alpha mK)/[(1-\alpha)^2 + \alpha mK] \tag{4}$$

where K is defined by

$$K = [(\rho_{\rm g}/\rho_{\rm l})^{1/2} (\mu_{\rm l}/\mu_{\rm g})^{b/2}]^{2/(2-b)}.$$
 (5)

Let us now consider the slip ratio y, which is known to satisfy the identity

$$\gamma = (\rho_1/\rho_2) \left[(1-\alpha)/\alpha \right] \left[\chi/(1-\chi) \right]. \tag{6}$$

Using equation (4), this simplifies to

$$\gamma = (\rho_{\text{V}}/\rho_{\text{x}})[mK/(1-\alpha)]. \tag{7}$$

Some properties of the correlations, equations (4) and (7) are:

- (1) From the numerical point of view, the agreement with the usual correlation, equation (2), is quite good.
 - (2) They do not yield unphysical singularities as $\chi \to 0$.
- (3) Their analytical form is very simple.
- (4) They only depend on the parameter m, which must be

^{*} Present address: CNRS-CPT, Luminy Case 907, F13288, Marseille Cedex 2, France.

Table 1. Comparison of the correlations equations (2) and (3)

X_{TT}	χ	α[equation (2)]	α[equation (3)]
55.21	2×10 ⁻⁴	0.149	0.137
30.20	4×10^{-4}	0.232	0.223
21.22	6×10^{-4}	0.291	0.284
13.52	8×10^{-4}	0.337	0.330
16.60	1×10^{-3}	0.374	0.368
7.436	2×10^{-3}	0.490	0.487
5.221	3×10^{-3}	0.555	0.553
4.062	4×10^{-3}	0.599	0.598
3.342	5×10^{-3}	0.632	0.631
2.849	6×10^{-3}	0.657	0.656
2.489	7×10^{-3}	0.677	0.677
2.214	8×10^{-3}	0.694	0.694
1.997	9×10^{-3}	0.708	0.709
1.821	1×10^{-2}	0.721	0.721
0.9873	2×10^{-2}	0.793	0.794
0.6877	3×10^{-2}	0.828	0.829
0.5306	4×10^{-2}	0.849	0.851
0.4330	5×10^{-2}	0.865	0.866
0.3661	6×10^{-2}	0.877	0.878
0.3172	7×10^{-2}	0.886	0.887
0.2798	8×10^{-2}	0.894	0.894
0.2501	9×10^{-2}	0.900	0.901
0.2260	1×10^{-1}	0.906	0.906
0.08691	0.25	0.948	0.945
0.03342	0.50	0.974	0.968
0	1	1	1

In order to relate the vapor quality χ and the parameter $X_{\rm TT}$ the following parameters have been used (corresponding to sodium): $\rho_{\rm I}=0.7217\,{\rm g\,cm^{-3}},\,\rho_{\rm g}=0.48.10^{-3}\,{\rm g\,cm^{-3}},\,\mu_{\rm I}=0.1475$ centipoises, $\mu_{\rm g}=0.02009$ centipoises, b=0.26. In equation (3) the parameter m has been fitted to m=0.054.

fitted to the experimental results. The usual correlation, equation (2), could be adjusted either by modifying the coefficients of the series in $1/X_{\rm TT}$ or by adding to it further

REFERENCES

1. R. W. Lockhart and R. C. Martinelli, Chem. Engng Prog. 45, 39 (1949).

 $\label{eq:central_loss} Acknowledgements — I \ wish \ to \ thank \ M. \ Ph. \ Berna, \ CEA/DSN/Cadarache for illuminating discussions.$